Perpetual Universe Theory

Fig. 1. NGC 6995 The Bat with 5 filters RGB Ha OIII.

Perpetual Universe Theory – Addington-Barker, Originally Published Thurs, 13 November 1997.

Could it be gravity is the answer to the question behind the origin of big bang, and that it is gravity which really drives the creation and the existence of the universe?

Consider, that the space and matter that exists in our universe today, was not created by the event of the big bang, but that it has always been present in the space that now defines our universe.

If we move forward in time from our point of view, long after the very last star dies, and all the energy in our universe has been exhausted. The only driving force left is that of the attraction of gravity.

Given long enough, slowly, over the course of time, enough matter would recombine to alter the very fabric of space-time at the centre point of the mass. In a moment of singularity, a new universe would be created.

If there are other universes beyond, our visual horizon, could we then borrow and exchange matter with another universe? Furthermore, could there be matter within our own universe that is left over from a previous universe within the same space?



  • What is the energy driving expansion of the universe? Could this collapse?
    Would gravity, given enough time, capture enough matter to create an infinite density, singularity, or big bang leading to re-inflation?
  • What would be the estimated amount of matter required to create a singularity?
  • Is there possibility of matter from a previous universe being left over in the present universe?
  • Could dark matter be made up of Hawking radiation, gasses and evaporated matter?


  • Matter-antimatter asymmetry problem. Where is the antimatter and why is there a dominance of matter?
  • Is there a cancellation between the two process, such as the violation of CP symmetry, and do we have less and less matter each time the universe is recreated?
  • Why does time pass in one direction, could it, in actuality, have a negative, and pass in reverse requiring another dimension of Space-Time?


  • Infinity time-distance gravitational capture, (static gravitational field).
Published (original website): Thursday 13 November 1997.
Transferred (new website): 5 February 2007.
Links updated – June 2011.
Links updated – May 2017.
Links updated –

Ongoing work and links:

Various formulations of inflation theory and their detailed implications have become the subject of intense theoretical study. In the absence of a compelling alternative, inflation became the leading solution to the horizon problem. In the early 2000’s, inflation was found by some theorists to be problematic and unfalsifiable in that its various parameters could be adjusted to fit any observations, a situation known as a fine-tuning problem. Furthermore, inflation was found to be inevitably eternal, creating an infinity of different universes with typically different properties, so that the properties of the observable universe are a matter of chance. An alternative concept including a Big Bounce was conceived as a predictive and falsifiable possible solution to the horizon problem, and is under active investigation as of 2017.

The phrase “Big Bounce” appeared in the scientific literature in 1987, when it was first used in the title of a pair of articles (in German) in Stern und Weltraum by Wolfgang Priester and Hans-Joachim Blome. It reappeared in 1988 in Iosif Rozental’s Big Bang, Big Bounce, a revised English-language translation of a Russian-language book (by a different title), and in a 1991 article (in English) by Priester and Blome in Astronomy and Astrophysics. (The phrase apparently originated as the title of a novel by Elmore Leonard in 1969, shortly after increased public awareness of the Big Bang model with of the discovery of the cosmic microwave background by Penzias and Wilson in 1965.)

In 2003, Peter Lynds has put forward a new cosmology model in which time is cyclic. In his theory our Universe will eventually stop expanding and then contract. Before becoming a singularity, as one would expect from Hawking’s black hole theory, the universe would bounce. Lynds claims that a singularity would violate the second law of thermodynamics and this stops the universe from being bounded by singularities. The Big Crunch would be avoided with a new Big Bang. Lynds suggests the exact history of the universe would be repeated in each cycle in an eternal recurrence. Some critics argue that while the universe may be cyclic, the histories would all be variants. Lynds’ theory has been dismissed by mainstream physicists for the lack of a mathematical model behind its philosophical considerations.

In 2006, it was proposed that the application of loop quantum gravity techniques to Big Bang cosmology can lead to a bounce that need not be cyclic.

In 2007, Martin Bojowald, an assistant professor of physics at Pennsylvania State University, published a study detailing work somewhat related to loop quantum gravity that claimed to mathematically solve the time before the Big Bang, which would give new weight to the oscillatory universe and Big Bounce theories.

One of the main problems with the Big Bang theory is that at the moment of the Big Bang, there is a singularity of zero volume and infinite energy. This is normally interpreted as the end of the physics as we know it; in this case, of the theory of general relativity. This is why one expects quantum effects to become important and avoid the singularity.

However, research in loop quantum cosmology purported to show that a previously existing universe collapsed, not to the point of singularity, but to a point before that where the quantum effects of gravity become so strongly repulsive that the universe rebounds back out, forming a new branch. Throughout this collapse and bounce, the evolution is unitary.

Bojowald also claims that some properties of the universe that collapsed to form ours can also be determined. Some properties of the prior universe are not determinable however due to some kind of uncertainty principle.

This work is still in its early stages and very speculative. Some extensions by further scientists have been published in Physical Review Letters.

In 2011Nikodem Popławski showed that a nonsingular Big Bounce appears naturally in the Einstein-Cartan-Sciama-Kibble theory of gravity. This theory extends general relativity by removing a constraint of the symmetry of the affine connection and regarding its antisymmetric part, the torsion tensor, as a dynamical variable. The minimal coupling between torsion and Dirac spinors generates a spin-spin interaction which is significant in fermionic matter at extremely high densities. Such an interaction averts the unphysical Big Bang singularity, replacing it with a cusp-like bounce at a finite minimum scale factor, before which the universe was contracting. This scenario also explains why the present Universe at largest scales appears spatially flat, homogeneous and isotropic, providing a physical alternative to cosmic inflation.

In 2012, a new theory of nonsingular big bounce was successfully constructed within the frame of standard Einstein gravity. This theory combines the benefits of matter bounce and Ekpyrotic cosmology. Particularly, the famous BKL instability, that the homogeneous and isotropic background cosmological solution is unstable to the growth of anisotropic stress, is resolved in this theory. Moreover, curvature perturbations seeded in matter contraction are able to form a nearly scale-invariant primordial power spectrum and thus provides a consistent mechanism to explain the cosmic microwave background (CMB) observations.

Possible evidence of matter, from before the Big Bang

A few sources argue that distant supermassive black holes whose large size is hard to explain so soon after the Big Bang, such as ULAS J1342+0928, may be evidence for a Big Bounce, with these supermassive black holes being formed before the Big Bounce.

Further Reading

Physical Cosmology
The Universe before the Big Bang
Quantum Foam / Spacetime foam
The Big Bounce

Nuclear Safety Projects & Radiation Science | Particle Physics | Fluid & Thermodynamics | Climate Variability & Environmental Science | Other areas of research: British (Royal) Etiquette | Social & Behavioural Psychology.